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1 Introduction 

The magnetic-fusion energy (MFE) program, like many other scientific and 
engineering activities, has a need to efficiently develop complex modeling 
codes which combine detailed models of components to make an integrated 
model of a device, as well as a rich supply of legacy code that could provide 
the component models. There is also growing recognition in many technical 
fields of the desirability of steerable software: computer programs whose 
functionality can be changed by the user as it is run. This project had 
as its goals the development of two key pieces of infrastructure that are 
needed to combine existing code modules, written mainly in Fortran, into 
flexible, steerable, object-oriented integrated modeling codes for magnetic- 
fusion applications. These two pieces are (1) a set of tools to facilitate the 
interfacing of Fortran code with a steerable object-oriented framework (which 
we have chosen to be based on PythonlW3, an object-oriented interpreted 
language), and (2) a skeleton for the integrated modeling code which defines 
the relationships between the modules. The first of these activities obviously 
has immediate applicability to a spectrum of projects; the second is more 
focussed on the MFE application, but may be of value as an example for 
other applications. 

2 Tool Development 

For codes developed based on the Basis4 system, the code developers provide 
interface description files which contain information about the variables and 
routines in the code. A tool in the Basis system called MAC can then be 
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used to generate the required glue functions that enable the Basis interpreter 
to access the variables in the code, and to invoke Fortran functions and 
subroutines. Although Basis system has been ported to many computer 
platforms, there are still some platforms, especially parallel computers, where 
Basis is not supported. In order to run their code on platforms where Basis 
is not available, LLNL Heavy Ion Fusion (HIF) program is the process of 
converting their Basis based code to a Python based code. As part of the 
conversion process, David Grote has developed a tool called PYMAC, which 
serves the same purposes as MAC, i.e., parsing the interface description files 
written for the Basis base code and generating the required glue functions, 
only in this case for the Python interpreter instead of the Basis interpreter. 

Most of the Fortran legacy codes in the MFE community were not writ- 
ten for use with Basis; therefore, we could not use PYMAC directly in our 
project. Instead, we borrowed some techniques in PYMAC and developed 
our own tools to automate the Python-Fortran interface. Our tools con- 
sists of two sets of Python codes, one (PYCOMMON) for making Fortran 
common-block variables accessible to the Python interpreter, and the other 
(PYCFORTRAN) h h w ic enables the Python interpreter to invoke Fortran 
functions and subroutines. 

2.1 PYCOMMON 

The input to PYCOMMON are files containing standard Fortran- common- 
block declarations and variable-type declarations. The following is an exam- 
ple of input files to PYCOMMON: 

integer kion, kk, kj, curtype, njcur,diffeqmethd 
parameter (kj = 51, kion = 5, kk = kion + 4) 
real*8 u, usave, en, te, ti, rbp, ene, enesav, curden, etor, 

uav, uav0, eneav0, eneavl, curpar-soln 
’ common /soln/ u(kk,kj), usave(kk,kj), en(kj,kion), te(kj), 

ti(kj), rbp(kj), ene(kj), enesav(kj), curden( 
etor(kj), uav(kk,kj), uavO(kk,kj), eneavO(kj), 
eneavl(kj), curpar-soln(kj), njcur, curtype, 
diffeqmet hd 

The output are files containing wrapper functions written in C. These 
output files can then be compiled and linked with the Fortran- code to 
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form a dynamically loadable Python module. When imported by Python, 
this Python module contain Python objects with attributes corresponding to 
the items in the Fortran common blocks. If the file above is named ‘soln.i’, the 
Python module will contain a Python object named ‘soln’ which is a proxy 
to all the parameters and variables in ‘so1n.i’. Parameters l&on, Iclc, and Icj 
are mapped into read-only attributes of the proxy object ‘soln’. Attributes 
corresponding the the variables in the common blocks allow both read and 
write access. For example, the following Python statement: 

>>> soln.njcur = 1 

sets the variable ‘njcur’ in the common block to 1. 
Attributes corresponding to array variables are references to Python ob- 

jects of the ‘PyArray’ type, a built-in type defined in the Python Numeric 
module. The elements of the arrays can be manipulated through the built- 
in functionality of the ‘PyArray’ type. For example, the following Python 
statements: 

>>> soln.te[:] = 0.2 
>>> soln.u[O] = soln.te 

first set all the elements of the one-dimensional array ‘te’ to 0.2, and then 
element-wise copy ‘te’ to the first row of the two-dimensional array ‘II’. No- 
tice that the indices of ‘PyArray’ objects start from 0; therefore, soZn.u[i,j] 
corresponds to u(i + 1, j + 1) in Fortran. 

2.2 PYCFORTRAN 
The input to PYCFORTRAN are files containing standard declarations of 
Fortran- subroutines, functions, and variable-type, with an extension to 
specify arguments as input or output variables. The following is an example 
of such input files: 

% ModuleName = an-example 
% CommonBlocks = 
% Fortran 

subroutine diff(a:in, diff-a:out, n:in) 

3 



integer n 
real*8 a(n), diff-a(n-1) 

% Fortran 
subroutine diffx(a:in, diff-a:out, m:in, n:in) 
integer m, n 
real*8 a(m, n), diff-a(m-1, n) 

% Fortran 
subroutine diff-y(a:in, diff-a:out, m:in, n:in) 
integer m, n 
real*8 a(m, n), diff-a(m, n-l) 

The output of PYCFORTRAN are also files containing wrapper functions 
written in C. Again, such files can be compiled and linked with the Fortran- 
77 code to form dynamically loadable Python modules. In the input file 
for PYCFORTRAN, users can also specify names of PYCOMMON input 
files to be included as parts of the Python Module, so that the wrapper 
functions for the corresponding common blocks are included in the output of 
PYCFORTRAN. For example, if the second line in the above file were to be 
changed to: 

% CommonBlocks = soln 

The Python proxy object ‘soln’ in the example in the previous section would 
be in the Python module ‘an-example’. 

In addition to the files for wrapper functions, PYCFORTRAN also gener- 
ates Python interface description files which are only documentations of the 
signatures of the Python functions and are neither compiled nor linked with 
the Python extension modules. If the above file is named ‘an-example.pack’, 
the corresponding Python interface description file generated by PYCFOR- 
TRAN will be named ‘an-example.py.signature’ containing the following in- 
formation: 

double diff-a[n-1] <- diff (double a[n], int n) 
double diff-a[m-1, n] <- diffx (double a[m, n], int m, int n) 
double diff-a[m, n-l] <- diff-y (double a[m, n], int m, int n) 

Notice that the arguments declared with the ‘:out’ attribute do not appear in 
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the argument lists of the Python functions. Instead these arguments become 
the returned values of the routines. For array arguments, this also means 
that new ‘PyArray’ objects are created. Since the Fortran routine can be 
a function with a returned value and there can be more than one argument 
tagged with the attribute ‘:out’, the Python functions needs to return a 
Python ‘tuple’ object. The order of the returned objects in the ‘tuple’ object 
is the same as the order they are declared in the Fortran routine. If the 
Fortran routine is a function, its returned value is the first element of the 
returned ‘tuple’ object. For a Fortran subroutine which has no argument 
with an ‘:out’ tag the corresponding Python function returns ‘None’, a special 
Python object representing ‘nothing’. 

A Fortran scalar argument with a ‘:in’ tag appears in the argument list but 
not in the returned tuple. Furthermore, the argument will not be modified at 
the Python level even when the Fortran function inadvertently modifies that 
argument. This is because the scalar argument being passed to the Fortran 
function is a copy of the Python scalar used as the argument. A Fortran 
scalar argument without an input/output tag appears in both the argument 
list and the returned tuple, because the argument will not be modified and 
the updated value has to be accessed as an element in the returned tuple. A 
Fortran array argument with an ‘:in’ tag, or without a tag, appears in the 
argument list but not in the returned tuple. Beware that the ‘:in’ tag has 
no effect on array arguments, i.e., they can still be modified by the function. 
This is because Fortran 77 has no way to prevent an argument from being 
modified, and we choose not to make a copy of the array before passing it to 
the Fortran routine. 

The Fortran types supported by PYCFORTRAN so far are ‘integer’ and 
‘real*8’, both scalars and arrays with dimensions no more than 5. For- 
tran integer scalars are mapped to Python ‘int’-type objects, and Fortran 
‘rea1*8’ scalars are mapped to Python ‘float’-type objects. Fortran arrays are 
mapped to Python ‘PyArray’-type objects. PyArray objects have another 
level of type system among themselves. Fortran integer arrays are mapped to 
‘PyArraylNT’, and Fortran real*8 array are mapped to ‘PyArrayDOUBLE’. 
By default, PyArray objects have row-major strides. However, the Python 
functions generated by PYCFORTRAN accept only PyArray objects with 
column-major strides because Fortran arrays have column-major strides. The 
Python function ‘transpose’ in the ‘Numeric’ module can be used to turn a 
PyArray object with row-major strides into one with column-major strides. 
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For example, if a Python function ‘f(x)’ expects the variable ‘x7 to be a 2x3 
array with column-major strides, and if ‘y’ is a 3x2 row-major Python array, 
the following will be a legal statement: 

>>> from Numeric import transpose 
>>> f(transpose(y)) 

When Python functions generated by PYCFORTRAN return PyArray ob- 
jects, the returned PyArray objects always have column-major strides. 

3 An Object-Oriented Transport Code 

The second part of the project is to design the skeleton for an object-oriented 
transport code - the basic prototype for a tokamak modeling code. A key 
element in the design process is the development of a class hierarchy. A class, 
in a crude way, can be regarded a data structure plus functions that manip- 
ulate the data structure. In an object-oriented code, the logical components 
of the code are objects each of which is an instance of one class or another. 
Because the class hierarchy, which reflects the relationships between classes, 
determines how objects in the code interact with one another, it affects the 
stability of the code structure as the code continues to evolve to include 
more capability. A well designed class hierarchy can reduce the dependency 
among the components so that new features can be added to the code with 
minimum changes. 

Recognizing that design of the class hierarchy is an important but difficult 
task that requires many iterations of trial and error, we first developed a first- 
generation class hierarchy for a prototype Python transport code. The reason 
for building the prototype in Python is because it is a interpreted language 
providing many flexible features that a compiled object-oriented language 
like C++ lacks. Moreover, Python can be used as a scripting language which 
allows code steering, one of the goals for this project. 

In May 1998 th e national Magnetic Fusion Energy Program launched the 
National Transport Code (NTC) D emonstration Project. We brought to the 
table our design concepts developed as part of our LDRD activity earlier 
in the year, and re-oriented them to be compatible with objectives of the 
NTC project: web-invocable, distributed web client, physics application, and 
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database server, and a distributed development team. Our efforts in this area, 
since May, have been supported by NTC and base-program funds, but have 
drawn heavily from our earlier experience. Currently the class structure takes 
advantage of the encapsulation methodology of object-oriented design such 
that any changes in transport models, methods of updating fields (solving 
PDE or reading from a data base), independent variables (toroidal flux or 
poloidal flux), and so on, can be achieved by changing a very small isolated 
part of the code. This makes the code stable and easy to maintain. 

The Python transport code has been one of the keys elements for the NTC 
Project to successfully demonstrate that modern computer science techniques 
can be applied to the development of a transport code that performs non- 
trivial physics simulations. Although the NTC Project plans to migrate the 
physics code to C++, it is intended that the Python transport code will 
continue to play a significant role in testing new capabilities before they are 
implemented in the C++ code. 
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